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Section 1: Introduction

, The purpose of this paper is to discuss some characteristics of

the typical cluster size for the self-matching 2-dimensional perco-

lation models. For simplicity we only describe o;& results for the
2

site percolation model on Z and leave',the task of extending our

discussion to general models to the readers. Let us now introduce

the 2-dim site percolation model. Let P, denote the probability

measure under which all sites of the lattice 0 are independently

occupied (non-occupied) with probability p (respectively 1-p).

Wt_-say that x is connected to y if there is a nearest neighbor

path over occupied sites connecting x and y. Le W- _

the cluster of occupied sites connected to 0. Gt paper is devoted

to the study of certain special properties of the typical cluster

size" about the critical point p =inf(p :Py(O ) >0). rIn the
6

paper "Scaling Theory of Percolation Clusters" [1979], Stauffer

suggested the following basic postulate: 1, /,'t N,

"We assume that the critical behavior of percolation is dominat-

ed by clusters of size S Elp-pc - I /O, where differently defined

typical cluster size S all diverge with the same exponent".

Furthermore, he also suggested a scaling hypothesis that

(*) (W' =n) 'n-+exp(-n/ (p)) if p <

(**) n-+lexp(-Vn/(p)) if p c

Nevertheless, it was not clear what Stauffer meant by the "typical

cluster size". From (*) we see that

..... ..
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E p(jW01t; 0 ;-)aln (-4+l) +t exp (-n/S C (P))

n

hence

s t(p) _-Ep (Iwo0It+l;0 ;$c)/E P(1Wo01t; 0 ;$ )

S (P.+3+t - -C+2+td

s (P)- +2+tfOX- +l+tdx

S (p).

Similarly we can also see from (**) that St(p) aS (P). Thus we

expect from the scaling theory that for each definition E(p) of

the correlation length there exists a number S& (p) which decays

at the same rate as St(p) if p -PC" We call SE (p) the typical

cluster size associated with the correlation length (p). The-

concept of correlation length is well studied. The usual defini-

tions for the correlation length are

U(p) = [inf{N :P p(0-x) 5exp(-Ixl/N)}] -  for p<p
1

Et(P) = [1IxItPP(0O X; 0 )/xPp(0 X; 0 /a0 )]t

rmin{n :CR p(n) 5 } for p <pc
L(p, E)

min{n :CR p(n) 1-El} for p>pc

where CR (n) =P (. an occupied crossing from left to right of the

box B(n) of size n centered at 0).

In the definition of L(p,E) it is not important to choose a

precise value of e since we can show that for c smaller than an ' of
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all the above definitions of the correlation length are equivalent

in the sense that if (p) ZIp-pC -V, i.e.

lim log(p) = _

PtPc logip -PC[

or p 4 P

then so do the others. From now on we shall fix c and write

L(p) instead of L(p,E). For further details on the correlation

length we refer the readers to [CCF, 19851, [Nl, 1985], or [K3, 1986].

Having introduced the correlation length L(p) we now want to

show how to define the typical cluster size SL(p) associated with

L(p). We think of the "typical cluster" as the cluster of all sites

in the box B(L) connected to its boundary aB(L) by occupied paths

and we define

SL(p) = E p[#{x EB(L) :x-*3B(L)}].

This quantity has already been studied extensively by Kesten in

[K3, 1986] and was shown to play a very important role in the

proofs of scaling relations. As a matter of fact, in that

paper Kesten showed that St(p) and SL(p) are equivalent in the

sense that a constants At,At > 0 so that, for t >1

A At St(P) S S L( p ) 5 A t St (p ) .

In this paper we take an additional step to observe from (*) that

S (p) lim w logP (W n - S
"- 1= 1-~ aS(p) ,

.- c n P

and then show in section 3 that in fact SI (p) ZS&(p) as in the
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following

Proposition 1: Assume that SLIP) Zip-pc as p +pc. Then so

does SI (p); i.e. SI(p) z lP -PcI-A as p +pc.

Note that the limit in the definition of S I(p) exists from the

submultiplicative property of n- P p(IWI =n) (see Kunz-Souillard

[1978]). It turns out that the proof of the above result will

be based on the following

Lemma: Let M t[L(p)] = the tt h moment of the number of sites in

the box B(L) connected to its boundary 3B(L) by occupied paths,

i.e.

Mt[L(p) ] = Ep[I{xEB(L) :x-PaB(L)}It].

Then

Z t [ L ( p ) ] !5 B t [ K I1 S L ( p ) ] t

where Bt = (t +1)! and K1 is a positive constant depending only on

tv

The proof of the above lemma can be found in [K2, 1986] of

Kesten except the fact that Bt = (t + 1)!. In our opinion it is

not easy to see that the Bt's are of order (t +1)! therein since

its proof is based on a rather complicated combinatorial argument.

Since our proof for proposition I depends on the B t's so we shall

give a new proof for the lemma in section 2 with a simple inductive

argument.

We now want to note the following °
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Remarks:

(1) If we apply the estimate in the lemma to the argument in

the section 3 of [K3, 1986] we can show that

(1.1) Ep (I W0 it; 1w0 1 <-) <-  Ct [K2 SL(p)]t7p (L)

where 7r (L) =P (0 -3B(L)) and Ct = (3t)! However, the constants

Ct = (3t)! is not strong enough as they were conjectured by

Stauffer [1979] that Ct =t! for p < Pc' and that Ct =(2t)! for

P >Pc.

(2) The scaling hypothesis (**) implies that

SI (p) E [lim - logPp(- > I - n)]- I

n /n p 0 SE(p)

for p >Pc.

We believe in the above but we do not know how to prove this.

Having discussed several ways to look at the typical cluster

size we now want to study its role in the singular behavior of

the free energy, which is known as the same as the mean number of

clusters per site,

f(p) = I Ip (W 0 [l =n).n>l n p

It was conjectured in [Sykes-Essam, 1963] that the free energy is

singular at Pc. It is not clear at all that the free energy has

any singularity since Kesten [Kl, 1982] showed that it is twice

differentiable. The numerical calculations together with the

scaling theory suggested that the third derivative of the free

energy should blow up at pc at the rate 1p-p-l- where theIIF !V r11, 1,1, 1'.r , J. J 1P 1%"
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critical exponent a is realted to the exponent v of the correlation

length by the scaling relation (R) 2 -a =dv , d = 2 :dimension.

Thus we expect that the singular part f sing(p) of the free energy

should behave as IP -Pc d v in a neighborhood of pc" However, it

would be difficult to know the singular part since we do not know

whether the free energy has any singularity. While it is not easy

to define the singular part f sing(p), to prove the scaling relation

(R) we propose a new way to look at this. It is based on the obser-

vation that if the free energy behaves singularly at p c then only

the tail of the summation in f(p) = Znn- iPp(IW 0 l =n) should play

an important role in this singularity. In other words, the mean

number of clusters per site should be singular (if it were so!) due

to the number of "large clusters". But how large the cluster

should be in order for us to see the scaling relationship such as

(R)? Physicists (e.g. Stauffer (1979), Essam (1980)) suggested

that any cluster which is larger than the typical cluster size

should be thought of as the large cluster. From this we believe

that

f (p) E n-ip (W 0I =n),
n 6 SL(p)

where 6 is some positive constant, should be thought of as a re-

presentative for the singular part of the free energy. In order

to support our belief, in section 4 we shall apply some recent re-

sults of Kesten (see Kesten's theorem in section 4 of our paper)

to give an easy proof of the

Proposition 2: Assume that L(p) ;rIp -pc as p tpc (or p +pc ) .
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Then d

fs(p) P Ip-PCl as p Pc (or p pc )

where d = 2 :the dimension of the percolation model.

.!
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Section 2:

Fix E as in the definition of L(p,E). From now on C ,C will

be constants depending only on E and their value may vary from

line to line. Let ffn =P p(0 is connected to a vertical line at

distance n away from the origin). It is easy to show

(2.1) 7r P (0 - 3B(n)) F 7 (n)

(2.2)IT T

for all n!5L(p), where f(p)X g(p) means that H CC~ such that%

Recall that Mt[L(p) I =E {1X E B(L) : x-DB(L)}l t Average of number of
t p

sites connected to the boundary of the box of size L (p). We claim

2L(p)
(2.3) Mt. [L (p) 1 ! CE (t+l)L(p)[ I iTk]Mt[L(p)I.

'lb prove this we write

t+l
Mt~l L~p)]P._fn {x.i-DB(L)})

Mt+ L(PI =X , . Xt+,EB(L) P i-l

2L(P) t
X P ( n {x. -DB(L)} x t+aB(L))

Xt+i:kC-O x 1I..,xtEB(L) P il 1'

where the index k is the smallest distance fran x+ 1 to the set

{x1 1  JA() For a fixed k 4, we have

t
P I {x. -3B(L)I,xt -3B(L), Circuit (k))

i-l t Xtl

t
!5 P(n {x.+aB (L) in B(L) \B (k/2) } and {x -3 B (k/2)}

P i-l 1 xt~i t+l l

%F M A.



9

where Circuit (k) is the event that a an occ~upied circuit in the annulus

B xti(k)\B 'ti(k/2) centered at x,.Then by FKG the.

t+1 t+1

uHIS P ( n {x. -3B (L) })P p(Circuit (k)) C E:P ( n {x~ i -B(L)}
p p-- p i-

and
t

PHIS P ( n {x. i aB(L) in B(L)\B (k/2)1)P p{xt -)-3B (k/2)}
1 t+ X t+l xt~

t
C ' CP ( n I x . aB (L)}D)7rk.

Hence, for such a kA w ~e obtain

t+1 t
P ( n {x. -aB (L)} C 7r P ( n {x. - aB (L)})D

P i-l k p j1

For k 4 the above inequality is obviouis. Thus wehave

2L (p)
M t+i [ L(p)] {C~ E: I t(k+l)Tr k

k= 0

L t
+ E E 8 (L-k +1)r (L -k)} P ( nfx .4 ;~B(TO )

k=O X11. . . X EB(L) i=1

since there are at most 8t(k +1) points which are at the distance

k from {x 1,,..., x tI and there are at most 8(L -k +1) points at the

distance k from the boundary aB(L) .Clearly the above shows

(2.3).

Remark: In [K2, 1986], Kesten further showed

2L(p) L(p)
(2.4) 1 7Tk Z 7wkdL (p) ir (L).

k=0 k=0

Hence, (2.3) implies

(2.5) M t+iI[L(p)] !5 (t +1)L (p)21 ,r(L)M ttL(p)].
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Note that

L(p) 2
MI[L(p)l = P (x -B(L)) !5 C X (L-k +I)rk 5 K1 L r p(L).

xEB(L) p  k=0

This shows

(2.6) M t+ [L(p)] e (t +1)![K L2(p)ir (L)]t+l

where K1 is some positive constant depending only on . *1
Before leaving this section we remark that by the same argu-

ment we can show, for t i1,

(2.7) Ep{ IW0 nB(L) jt0aB(L)} -C (t +)L 27T(L)Ep{IW 0 nB(L) It-lO -3B(L)}

and
(2.8) E p{1W 0nB (L) I tj0 -DB (L)} - (t +1) ! [K 2 L2 i(L)]It I.

where K2 is some positive constant depending only on c. The in- I
equalities (2.6) and (2.8) play important roles in the proof of

(1.1). For a proof of this see [K3, 1986, section 31.

A'

" . .. a " . .. .



* Section 3:

In this section we shall show the proposition 1. First we

claim

(3.1) S I(P) CC S OP).

The proof given here was suggested to the author by H. Kesten. TO prove

this it is enough to show a C1 >0 so that

(3.2) ~ P W0 1 ClkL 2nffL)) 5 C 2exp(-C 3k).

we denote B(n) the boxes of size L(p) centered at n =(n 12L,n 22L),

(nln )E~ 2Z We say that n is connected to 0 if a an occupied

path connecting the B(n) and B(0). Let C ={n :0 -n}. It can

be seen from the proof of the theorem 5.1 of [Kesten, 19821 that

(3.3) p, (ICI >k) ! C 2exp(-C 3k)

for some positive constants CC. Thus to show (3.2) it is
2'3'

enough to show the exponential decay of P (IW0I C kL 2 n(L);ICI 5k).

Note that the number of clusters C with ICI k is bounded by k

*for some positive constant C4. Fix such a cluster

C -nl, .* nZ} !5k. Let

Xn. = KX E B (nl :x-*3B(n.)I

d We have

P (1W() I>c kL 2iT (L)C') !5 P ( X >C kL 2 7 (L);C)
p 0 1 p pnE- n p

!5 nfe r~lL Tp (L) E exp{( I rx );C}
r>0 nEC n i

!5. ine ~ rC 1 kL 2 
7 L Ep( ~l

.. ~ .~r'h
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But ht "t] (L)] .
rXn 00rt t r0 2 t C

E (e -1) _ -E (X ) ( + 1)(t )[K 1Lr -(L) I rt(t +1)[ K1  L
p -- t-o 0

2Now we choose r = 1/2K 1 L 7T (L). Then

rXn itE (erx n )  -!5 7 (t +i) (1)t < C5 < .

t=o

Thus C 1
--k

Pp(IWo1 ->C kL 2T (L);ICi k) Ckek l (C5k
P1 p 4 C5 .

Choose C1 
= 2K1 x0 , where x0 

= logC 4C5, to obtain (3.2). Thus from

(3.1) the critical exponent of SI(p) is not larger than A. To get

the other bound we consider

Ep(IW 01t) = n tp (IW0I =n) !5 n ntnexp(-nlSI(p)) <- KSI(p)t+2

n=l n=l

where K is some positive constant. But in [K3; 19861 Kesten showed

that

E p(jW 0 1t ) _> CtSL (P) trp(L)

where Ct is some constant depending on t. Then

t2

CtSL(P) t P(L) _ KSI (p )t+2

Hence,

logS L (P) 1ogC T (L t logKSI (p)

logIP -PcT t logp -Pc I  t+2 logp -p cI

Letting p +p and then t -- , we obtain the result that

s1 (p) V I p -pcI
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Section 4:

The proof of proposition 2 will be based on the following re-m

suits in [K3, 19861.

Theorem (Kesten):

Let L(p) and n p (L(p)) as before. Then we have

(a IOI W r (L)L (p)

(b) S L(p) x 7T (L)L 2 (p)

(c) a a positive constant 6 such that

P (00 > (L).

We omit the proof of this theorem and refer the reader to find

its proof in the combination of the two papers [K2 and K3, 1986].

Once the theorem is established the rest will be easy. In fact

on one hand we have from the Cauchy-Schwartz inequality that

[ ~ nP~ (1W,01 = n)I !P (jwj =n)]
n !6SL (p) Pn! 6S L (P)n p

I IWI=n 2 > 1 2

n 6 S (p) pV

by (c) of the above theorem. Thus

f (p) I n- P (IWOI =n) t_ 1 2 (L)/ 7 nPP(IW 0 i n
S n 6S L(p) p 4 4p n 6 S L(p)

1 2

it II (L) /C IT2 (L)L 2(p)

1

4C £L 2(p)_
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where in the last inequality we used (a). On the other hand,

fs(p ) ! 1 2 nP (1W0 1 =n)

( 6 SL(P))] n 6SL (P) P

!5 - I (1W0 1J1W 01 <C0)
2 2 Cp

L%

C L2 (p)Tr (L) C
S p

62 [L 2 (p) i (L)] 2 6 2L 2 (p)~p

by (b). Since L(p) Ip -p c -V we obtain the proposition.
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